
of about 80

Our Computer and Network Security are a mess, but we
are eventually going to win.

Bill Cheswick
ches@cheswick.com

1

mailto:ches@cheswick.com

On my farm, taking the long view

• Aging creeps up on you one day at a time

• Old fart talks are fun, and horrifying, but maybe not so useful

• A longer view brings out the good news, which is usually
incremental

• US GNP. cheap flights. Amazing personal hardware.

• Allegator-wrestlers need to think about the swamp
sometimes.

2 of about 80

Outline

• Current state of affairs

• What do I mean by winning?

• Why there is ample room for improvement

• Some of the avenues that seem promising

• Who might the principle actors be?

• Some obvious problems

• Conclusion
3 of about 80

What is the current state of affairs? Lousy!
• Spies are all in our business

• Huge advantage to the attackers

• Crappy client operating systems
• leaky sandboxes

• feature-driven

4

of about 80

State of Affairs

It is pretty bad out there, but it may get worse

5

Not working (poor engineering)
• User education

• Checklists

• Strong passwords

• PKI

• Laws, general and specific

• Perimeter security and firewalls

6

Failed sandboxes/OSes
• Java - supposed to fix all this in the 1990s

• Operating systems: fighting malicious users since the
1960s
• Now are called “browsers”

• We are stuck with out legacy stuff

7

Not working: legacy problems and software

8 of about 80

of about 80

What winning looks like

9

What winning looks like

• Zombie hoards are gone.

• Bad guys must be present to win.

• No more need for training about clicking on bad things

• potential evil programs are thoroughly restrained

• Authentication is easy to use, and very hard to steal

• More non-IT time with grandma.

10 of about 80

I think we can win

• Meaning build an affordable computing platform that can’t
be compromised by any user error not involving a screw
driver

11 of about 80

Winning Doesn’t Mean It’s Perfect

• It never does: there is no such thing. Winning means
good enough

• People will always be able to fool some of the people

• Don’t forget the three B’s: burglary, bribery, and blackmail.

• Any public service can be hit with denial-of-service attacks

• Attribution is going to continue to be a problem, because
the Internet connects to all the bad neighborhoods.

12 of about 80

We are already getting better in many ways

• online banking?

• Car keys

• Hotel keys

• analog cell phone cloning

• Mellisa virus?

• Virus checkers on Macs?

• iOS devices?
13 of about 80

of about 80

It’s Early in the game

14

The car metaphor

• I didn’t like it: apples and oranges

• Now I do: grapes and raisins

• Big, important addition to the economy, even though quite
flawed.

• Consider the Ford Model T, an intentionally minimum
implementation of an automobile

15 of about 80

Ford Model T (1913)

• 20 hp

• ran on gasoline, kerosine, and
ethanol

• rear wheel drive

• two speeds, plus reverse

16 of about 80

Ford Model T (1913, cont.)

• grey, green, blue, and red

• 1909–1913; Not black!

• 1913 model (shown) was $550

• four months pay for an assembly line worker.

• Now, with Electric start!

• But starting was an art, and dangerous!

• Modern UI was at least three years away
17 of about 80

Starting a Model T without breaking your arm
• … Well, you have to be aware of the possibility of a backfire first of all. But let’s

back up and look at the entire starting process. First, the choke near the right
front fender needs to be engaged to prime the carburetor. Then, the ignition key
need to be turned to magneto or battery. The timing stalk then needs to be
adjusted upward and the throttle stalk downward to allow the vehicle to idle.
Finally, pulling the hand brake will put the Model T in neutral.

• Now, you are ready to crank the engine. One of the keys to not breaking your
arm is to use your left arm as it is less likely to break given the direction the
engine cranks. Again, the engine may backfire, causing the crank to turn violently.
But, if you give it a good half crank or so, most times the engine should start.

• http://www.mikecastruccifordmilford.com/blog/start-a-model-t-without-breaking-
your-arm/

18 of about 80

19 of about 80

Old UI

20 of about 80

Some old-timey auto stuff

• Fading terms: choke, “flood the engine”, vapor lock,
double-clutch

• friction point

• My mother had a car you had to back up steep hills
because there wasn’t a fuel pump

21 of about 80

of about 80

• Brakes (1920s)

• Safety glass

• Seat belts (2 and 3
point)

• Backup light (60s)

• Crush zones

• Air bags, ABS

• Alcohol detection

• Alertness warnings

• Backup camera

• Collision avoidance
22

I can’t emphasize enough the effects of time

• 1960 cars had no seatbeats, backup lights were new, they
dumped a gram of lead into the air for each mile they
traveled. No cruise control, no intermittent wipers

• Holiday auto deaths were routinely announced after the
weekend.

23 of about 80

Long view: it is still early in the computer
revolution
• I know, I know, we aren’t talking UNIVAC or “minicomputers” any more.

• Moore’s law has gone a very long way.

• but software is nowhere nearly as improved

• The order of things: make it work, then worry about security: (It
Works!)

• rlogin, NFS, X windows, MSFT before 2001.

• But look where we are in UIs: I thought we might get stuck with MSFT
menus, like the QWERTY keyboard

24 of about 80

Legacy problems are not forever

• Windows compatibility is lessening

• Steve Jobs done a proper job of killing Flash

• Windows cascading menus (a bad implementation of the
old Apple stuff) now has competing touch screen
paradigms.

• Mellissa virus probably can’t spread any more.

25 of about 80

What changed?

• Better technology

• Regulation, yes, but enabled by

• spreading wealth

• The average American is 3—5 times richer now (in
real dollars) than in 1960.

• Consumer demand

26 of about 80

Legacy-shedding successes

• Macintosh rewrite, using Mach/FreeBSD as a start

• Not perfect, but easier to manage than Windows

• iOS and iPhone, rejecting old UIs
• the security model was that apps couldn’t touch other apps, or the

OS. (but see below)

• Many of these efforts fail, or try to do too much.

27 of about 80

I think we have already seen an inflection point

• It isn’t just about dangerous Microsoft products any more

28 of about 80

of about 80

We are not even trying

29

of about 80

We are Not Even Trying
• OPENSSL supported by

four part-time people.
Really??!

• Virus checkers,
Stackguard, address
randomization

• ^C is the solution to the
halting problem. Well, a
halting problem.

30

Not Even Trying: products/vendors we rely on
who have had minimal security concerns
• Microsoft, pre-2001

• Adobe Flash

• Networked printer software, most vendors

• Controllers, pre-Stuxnet

• Many older wireless base stations, home routers, etc.

• Anything that allows you to run with a factory-default
password

31 of about 80

Not Even Trying: Microsoft

• Huge number of system calls
• “Best block is no be there.”

• Device upgrades and passwords

• Windows XP

32 of about 80

Standard Linux

• Huge kernel, growing monotonically

• Even Linus says it is too big

• Ought to be rewards for excising code!
• Norman Wilson removed 2,000 lines from the research Unix kernel

• There are lots of kernel features that should be rethought,
and probably discarded

33 of about 80

Not Even Trying: slow upgrade cycles

• Any edge device

• Android devices after a Google update

34 of about 80

Not Even Trying: Best practices are crappy

• Good enough is not good enough

• Best current practice is a good legal standard, not a
useful engineering target

• The good is the enemy of the best, and we need the best

35 of about 80

Not even trying: back doors for maintenance
• sendmail in the 1980s

• but better now, see below

• Intel’s SMM, for starters
• Who wants a boat with a maintenance port in the bottom of the hull?

• Ask your telco folks about widely-known passwords

36

of about 80

Promising Tools and Possible
Remedies

37

Authentication

• We’ve wanted users to carry a suitable device since the
1980s

• Smart phones fit the bill nicely, and seem to be evolving
towards the right solutions.

38 of about 80

What works: 4 digit PINS!

• Why? Limited tries

• Robust history of success

• Only a few PINS need to be illegal

39 of about 80

Some programming facts

• Programming is hard — Dykstra

• Strong type checking languages remove classes of bugs

• Why do we accept languages with undefined properties?
(I am looking at you, C)

• Why Perl, which looks like TECO input, which looks like
TTY communications line noise?

40 of about 80

Dangerous or bulky languages we should have
mostly outgrown
• C

• Objective C. (Swift seems to be a disappointment).

• C++: awfully heavyweight

• Java: ditto, and the security promises were never
achieved

41 of about 80

Promising languages and technologies

• go, implementing CSP from the 1970s
• homework: see how fast the compiler compiles itself

• little languages and Unix filters, more ideas from the
1970s, now bringing you easy efficiencies with multi-core
computers

42 of about 80

What works: extremely careful programmers

• There are successful, reliable programs written in C
• Postfix!

• ssh?

• Not openssl

43 of about 80

What works: personal responsibility for the code

• Knuth’s personal checks

• Dockmaster: if someone breaks it, you are fired

44 of about 80

Works: Literate programming

• You write a document that
explains the program, algorithms,
etc., with code embedded in an
order natural to the description,
not what the compiler wants.

• weave and tangle generate a
document and a program

• Imagine a kernel lovingly
described and written in this form.

45 of about 80

Formal methods

• These have been known for a long time (e.g. see the Orange
Book.)

• We are making much better tools now.
• Jon Anderson’s work on TESLA (Temporally Enhanced System Login Assertions.)

• They are expensive and require unusual skills

• tangle, weave, prove?

• Once run, we can all share the results. I think they are part of the
answer.

46 of about 80

About Programming

• Much simpler, smaller software
1: tr -cs A-Za-z '\n' |
2: tr A-Z a-z |
3: sort |
4: uniq -c |
5: sort -rn |
6: sed ${1}q

• Small is beautiful; Plan 9/Inferno

• Software annealing

47 of about 80

Programming: can we do a much better job? Yes,
and some do:
• Aircraft avionics

• Insulin pumps and stair-climbing wheel chairs
• more bug-free, but perhaps without a nasty person in the threat model

• (Dean Kaman)

• The Space Shuttle

• SpaceX?

48 of about 80

Simpler machines

• a super 8051 would be safer than a trimmed-down Intel or
ARM

• No SMM, i.e. no maintenance holes in the hull. No
microcode updates. Use sockets or sledge hammers on
cheap CPUs for updates

• Do we need virtual memory, really? Shared libraries?
Memory-mapped files?

• all make the kernel less safe and predictable
49 of about 80

Simpler kernels

50 of about 80

• They never seem to get smaller

• Linux is out of control, and used as DOM0 for most VMs

• Examples:

• Norman Wilson’s IAG

• Plan9/Inferno

• Minux 3

Intel’s SMM mode: lurking insecurity

• Been around since the Intel 386. A separate, protected
“maintenance mode”.

• It has always worried me.

• A major player in the the list of specific attacks mentioned
in the Snowden releases.

• The star of several security papers.

51 of about 80

Simpler machines: do we really need virtual
memory any more?
• Most programs aren’t that big, and memory is cheap

• Still need it for some apps, but maybe not for most users

• 4k video and HTML5 seem to be it, for now

• Apple’s new SSD-only laptops come with substantially
slower CPUs (1.6GHz?)

52 of about 80

Dangerous and foreign programs need to be
absolutely contained
• We have an old-fashioned name for this kind of

software: Nixon era name: operating systems

• Does not look like Windows

• It appears that a vast army of volunteer
programmers is not capable of making small,
simple, clean designs.

53 of about 80

Simpler CPUs

• All this is unnecessary, and dangerous

• CPUs don’t have to be high performance, for most people

• This means much simpler designs could be used, and
manufactured on cheaper, trusted fab lines
• Two grad students and someone to handle out-of-order execution?

• Think of the Raspberry Pi, perhaps embedded in Lexan.

54 of about 80

of about 80

Who are you gonna call?

55

Goal: be like a wise man who built his house on
the rock
• Trusted hardware

• Trusted firmware

• Trusted OS
• trustable sandbox

56 of about 80

Design goals for a Standard Computer

• There’s nothing one can type, tap, swipe, or click on that
will change the software one is running, or change the
trusted computing base.

• There is nothing a remote attacker can do to the computer
without having physical access to the hardware. And
maybe even that is hard work.

• Clear indications when surfing the web off of well-defined
paths on the Internet.

57 of about 80

Windows OK

• It should be intuitively obvious when you are not visiting a
Fortune 500 web site, or a place you have never
searched before.

• Offers standard services

• It could meet the specs for this dream system.

58 of about 80

Maybe iOS...

• Certainly Apple tried hard to design security into iOS, and
they had a fresh start, sort of

• App isolation and app walled garden were key security
goals.

• How can we tell? Measure security…

• but we don’t know how

59 of about 80

Apple security?

• I don’t see how anyone can have confidence that their
non-trivial program is correct in this system.

• AND…they used to get jailbroken as soon as there was a
new release. Not a good sign, but this is improving.

• My best bet for the most secure clients at the moment, but
it is scary

60 of about 80

This just in about Apple

• Forensics experts tell me it is getting harder and harder to
jailbreak new Apple iOS releases

• Annealing in action

• A good sign

• But: hackers report secret protocol options and perhaps
back doors.

61 of about 80

Google

• A lot of efforts in important areas, with security on their
mind:
• Android

• Chrome

• Chromium

• and go, (a nice language)

62 of about 80

Android

• Android is the regular and systematic target of security
research papers, probably because it is much more
accessible than iOS.

• As for the apps: “the problem with folk songs is that they
are written by the people.” — Tom Lehrer

• It is also the basis for some brand new attempts at secure
clients, like Boeing Black, which is a good idea

63 of about 80

Government policies

• Mandate “no back doors”

• Allow/encourage data sharing about attacks

• buy safer computers

64 of about 80

What works: end-to-end crypto, maybe

• Johnny still can’t encrypt, and there is no excuse for it

• There is plenty of compute power

• The algorithms are fine

• It solves a lot of problems

65 of about 80

Software layers

• Proved correct: BIOS, kernel, compiler, libraries,
sandboxes

• Peter Neumann and others have been working on this
since at least the 1970s.

• Expensive, but cheap when amortized over the whole
user community.

66 of about 80

Sandboxes have to be rock-solid

• Data may be need to be saved in a specific way between
instantiations
• Browser cache, history, cookies, etc. This is a tough problem

• Applications that want to break the sandbox will not work
on the machine

• Such a machine is not for every one, but you probably
don’t want to do banking on another one

67 of about 80

Some special purpose systems already try to do
this
• aerospace and aircraft

• medical devices, but many use ancient Windows software
as a trusted computing base (It Works!)

• we are Not Even Trying with medical devices.
Regulation is completely broken.

• Controller hardware, esp. since Stuxnet.

68 of about 80

Some obvious problems

• “Unix is a system administration nightmare” — dmr

• Johnny and VPNs, SMIME, DKIM, PGP, GPG

• VOIP! Dangerous and waaaay too many options

• Dangerous clicks(!)

69 of about 80

Is it possible to make bug-free software?

• Many say no. I say yes, with simple enough clear
specifications

• There is no law of physics, and no theorem that says it is
impossible

• They are our machines, our software, and our networks.
We ought to be able to win this.

70 of about 80

I won’t live to see all this happen

• And there will still be plenty of security problems

• You can always fool people somehow

• And every public service can be flooded by the public
(DDoS)

71 of about 80

As for me

• I still do system administration in my copious spare time,
even if it is only for me.

• Farm equipment is fun to play with, but

• I miss lunches with geeks

• Still open to suggestions about work.

72 of about 80

of about 80

Our Computer and Network Security are a mess, but we
are eventually going to win.

Bill Cheswick
ches@cheswick.com

73

mailto:ches@cheswick.com

